The problem of preferential sampling in geostatistics arises when the choise of location to be sampled is made with information about the phenomena in the study. The geostatistical model under preferential sampling deals with this problem, but parameter estimation is challenging because the likelihood function has no closed form. We developed an MCEM and an SAEM algorithm for finding the maximum likelihood estimators of parameters of the model and compared our methodology with the existing ones: Monte Carlo likelihood approximation and Laplace approximation. Simulated studies were realized to assess the quality of the proposed methods and showed good parameter estimation and prediction in preferential sampling. Finally, we illustrate our findings on the well known moss data from Galicia.


翻译:地理统计学的优先抽样问题出现时,要抽样的地点的粗略位置与研究中的现象有关的信息。在优先抽样下的地理统计模型处理这一问题,但参数估计具有挑战性,因为可能性功能没有封闭形式。我们开发了MCEM和SAEM算法,以找到模型参数的最大可能性估计器,并将我们的方法与现有的方法(蒙特卡洛概率近似和拉普尔近似)进行比较。我们进行了模拟研究,以评估拟议方法的质量,并在优惠抽样中显示良好的参数估计和预测。最后,我们展示了我们从加利西亚获得的众所周知的苔类数据的调查结果。

0
下载
关闭预览

相关内容

最新《图理论》笔记书,98页pdf
专知会员服务
74+阅读 · 2020年12月27日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月30日
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员