Despite their numerous successes, there are many scenarios where adversarial risk metrics do not provide an appropriate measure of robustness. For example, test-time perturbations may occur in a probabilistic manner rather than being generated by an explicit adversary, while the poor train--test generalization of adversarial metrics can limit their usage to simple problems. Motivated by this, we develop a probabilistic robust risk framework, the statistically robust risk (SRR), which considers pointwise corruption distributions, as opposed to worst-case adversaries. The SRR provides a distinct and complementary measure of robust performance, compared to natural and adversarial risk. We show that the SRR admits estimation and training schemes which are as simple and efficient as for the natural risk: these simply require noising the inputs, but with a principled derivation for exactly how and why this should be done. Furthermore, we demonstrate both theoretically and experimentally that it can provide superior generalization performance compared with adversarial risks, enabling application to high-dimensional datasets.


翻译:尽管取得了许多成功,但有许多情况是,对抗性风险指标不能提供适当的稳健度量度,例如,测试时的扰动可能以概率方式发生,而不是由明确的对手产生,而对对抗性指标的测试失败的训练测试一般化可以将其使用限制在简单的问题上,因此,我们开发了一个概率稳健的风险框架,即统计上稳健的风险(SRR),它考虑到点性腐败分布,而不是最坏的对手。SRR提供了一种与自然风险和对抗性风险相比的稳健性表现的明显和互补的衡量标准。我们表明,SRR接受的估算和培训计划与自然风险一样简单和有效:这些只是需要对投入进行消毒,但有原则性地推断出应如何和为什么这样做。此外,我们从理论上和实验上都表明,它能够提供比对抗性风险更优的概括性业绩,从而能够应用于高度的数据集。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
专知会员服务
31+阅读 · 2021年6月12日
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
专知会员服务
28+阅读 · 2020年11月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月30日
Arxiv
0+阅读 · 2021年9月30日
Arxiv
18+阅读 · 2021年3月16日
Adversarial Metric Attack for Person Re-identification
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员