Brain tumor segmentation remains a challenge in medical image segmentation tasks. With the application of transformer in various computer vision tasks, transformer blocks show the capability of learning long-distance dependency in global space, which is complementary with CNNs. In this paper, we proposed a novel transformer-based generative adversarial network to automatically segment brain tumors with multi-modalities MRI. Our architecture consists of a generator and a discriminator, which are trained in min-max game progress. The generator is based on a typical "U-shaped" encoder-decoder architecture, whose bottom layer is composed of transformer blocks with resnet. Besides, the generator is trained with deep supervision technology. The discriminator we designed is a CNN-based network with multi-scale $L_{1}$ loss, which is proved to be effective for medical semantic image segmentation. To validate the effectiveness of our method, we conducted experiments on BRATS2015 dataset, achieving comparable or better performance than previous state-of-the-art methods.
翻译:在医学图像分割任务中,脑肿瘤分割仍然是一项挑战。随着变压器应用于各种计算机视觉任务,变压器块显示在全球空间学习长距离依赖性的能力,这与CNN系统是相辅相成的。在本文中,我们提议建立一个新型变压器基基因对抗网络,以自动分割脑肿瘤,并采用多种模式 MRI。我们的建筑由一台发电机和一个受微量最大游戏进度培训的辨别器组成。发电机基于典型的“U型”编码器解码器结构,其底层由带有Resnet的变压器块组成。此外,发电机还接受深层监督技术的培训。我们设计的导变压器是一个基于CNN的网络,具有多尺度的 $L ⁇ 1美元损失。事实证明,这对医学中分辨率图像分割有效。为了验证我们的方法的有效性,我们在BRATS-2015数据集上进行了实验,取得了比以往的先进方法更相似或更好的性能。