Dynamic movement primitives are widely used for learning skills which can be demonstrated to a robot by a skilled human or controller. While their generalization capabilities and simple formulation make them very appealing to use, they possess no strong guarantees to satisfy operational safety constraints for a task. In this paper, we present constrained dynamic movement primitives (CDMP) which can allow for constraint satisfaction in the robot workspace. We present a formulation of a non-linear optimization to perturb the DMP forcing weights regressed by locally-weighted regression to admit a Zeroing Barrier Function (ZBF), which certifies workspace constraint satisfaction. We demonstrate the proposed CDMP under different constraints on the end-effector movement such as obstacle avoidance and workspace constraints on a physical robot. A video showing the implementation of the proposed algorithm using different manipulators in different environments could be found here https://youtu.be/hJegJJkJfys.
翻译:动态运动原始材料被广泛用于学习技能,技术熟练的人类或控制者可以向机器人展示这些技能。虽然其一般化能力和简单配方使其非常吸引使用,但它们没有很强的保证来满足任务操作安全方面的限制。在本文件中,我们介绍了有限的动态原始材料(CDMP),这些原始材料可以使机器人工作空间的制约性满意度得到制约。我们提出了一个非线性优化的配方,以干扰DMP的重量因当地加权回归而下降,从而进入一个“零位屏障功能”(ZBF),该功能可以证明工作空间的满意度。我们展示了拟议中的CDMP,但最终效应运动受到不同的限制,如避免障碍和物理机器人的工作空间限制。一个视频显示在不同环境中使用不同操纵器执行拟议算法的情况。这里可以找到 https://youtu.be/hJegJkJfys。