We introduce a unified framework for group equivariant networks on homogeneous spaces derived from a Fourier perspective. We consider tensor-valued feature fields, before and after a convolutional layer. We present a unified derivation of kernels via the Fourier domain by leveraging the sparsity of Fourier coefficients of the lifted feature fields. The sparsity emerges when the stabilizer subgroup of the homogeneous space is a compact Lie group. We further introduce a nonlinear activation, via an elementwise nonlinearity on the regular representation after lifting and projecting back to the field through an equivariant convolution. We show that other methods treating features as the Fourier coefficients in the stabilizer subgroup are special cases of our activation. Experiments on $SO(3)$ and $SE(3)$ show state-of-the-art performance in spherical vector field regression, point cloud classification, and molecular completion.
翻译:我们从Fourier的角度为同质空间的分组等同网络引入了一个统一框架。 我们考虑在进化层之前和之后的有价地貌。 我们通过利用已取消的特性字段的四倍系数的宽度,通过Fourier域展示了通过Fourier域统一得出内核。 当同质空间的稳定分组是一个紧凑的 Lie组时, 就会出现宽度。 我们还引入了非线性激活, 通过元素上非线性的方式, 通过元素上的非线性的方式, 在通过正态变异法提升和投射回场后, 引入正常代表的正常代表点。 我们显示, 将功能作为稳定器分组中的四倍系数处理的其他方法是我们激活的特例。 $SO(3) 和 $SE(3) 实验显示了球矢量场回归、 点云分类和 分子完成的状态。