Improving machine learning performance while increasing model generalization has been a constantly pursued goal by AI researchers. Data augmentation techniques are often used towards achieving this target, and most of its evaluation is made using English corpora. In this work, we took advantage of different existing data augmentation methods to analyze their performances applied to text classification problems using Brazilian Portuguese corpora. As a result, our analysis shows some putative improvements in using some of these techniques; however, it also suggests further exploitation of language bias and non-English text data scarcity.
翻译: