Node classification on graphs can be formulated as the Dirichlet problem on graphs where the signal is given at the labeled nodes, and the harmonic extension is done on the unlabeled nodes. This paper considers a time-dependent version of the Dirichlet problem on graphs and shows how to improve its solution by learning the proper initialization vector on the unlabeled nodes. Further, we show that the improved solution is at par with state-of-the-art methods used for node classification. Finally, we conclude this paper by discussing the importance of parameter t, pros, and future directions.
翻译:图形上的节点分类可以作为 Drichlet 的图解问题, 标记节点上给出了信号, 并且无标记节点上做了调音扩展。 本文考虑了图表上的 Dirichlet 问题有时间限制的版本, 并展示了如何通过在未标记节点上学习正确的初始化矢量来改进解决方案。 此外, 我们显示改进后的解决方案与节点分类中使用的最新方法相当。 最后, 我们通过讨论参数 t、 Pros 和未来方向的重要性来结束本文 。