We consider online monitoring of the network event data to detect local changes in a cluster when the affected data stream distribution shifts from one point process to another with different parameters. Specifically, we are interested in detecting a change point that causes a shift of the underlying data distribution from a Poisson process to a multivariate Hawkes process with exponential decay temporal kernel, whereby the Hawkes process is considered to account for spatio-temporal between observations. The proposed detection procedure is based on scan score statistics. We derive the asymptotic distribution of the statistic, which enables the self-normalizing property and facilitates the approximation of the false alarm rate and the average run length. Thus, when detecting a change from Poisson to Hawkes process with non-vanishing self-excitation, the procedure does not require estimating the post-change network parameter while assuming the temporal decay parameter. We further present an efficient procedure to accurately determine the false discovery rate via importance sampling, as validated by numerical examples. The good performance of our procedures compared with the benchmarks is tested with numerical experiments with simulated and real stock exchange data.


翻译:我们考虑对网络事件数据进行在线监测,以便在受影响的数据流分布过程从一个点转向另一个点,并带有不同的参数时,发现一个组群的局部变化。具体地说,我们有兴趣发现一个变化点,导致基本数据分布从Poisson过程转向具有指数衰减时间内核的多变霍克斯过程,因此霍克斯过程被视为对观测之间的时空平衡进行核算。拟议的探测程序以扫描分数统计为基础。我们得出统计数据的无规律分布,使财产能够自我正常化,便利错误警报率和平均运行长度的近似。因此,在发现从Poisson过程到Hawkes过程的变化时,程序不需要在假设时间衰减参数时估计变化后的网络参数。我们进一步提出一个有效的程序,以便通过重要抽样来准确确定虚假发现率,并用数字实例加以验证。我们程序与基准相比较的良好表现通过模拟和实际库存交换数据进行数字试验进行测试。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
专知会员服务
42+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员