Quantum Bayesian Computation (QBC) is an emerging field that levers the computational gains available from quantum computers to provide an exponential speed-up in Bayesian computation. Our paper adds to the literature in two ways. First, we show how von Neumann quantum measurement can be used to simulate machine learning algorithms such as Markov chain Monte Carlo (MCMC) and Deep Learning (DL) that are fundamental to Bayesian learning. Second, we describe data encoding methods needed to implement quantum machine learning including the counterparts to traditional feature extraction and kernel embeddings methods. Our goal then is to show how to apply quantum algorithms directly to statistical machine learning problems. On the theoretical side, we provide quantum versions of high dimensional regression, Gaussian processes (Q-GP) and stochastic gradient descent (Q-SGD). On the empirical side, we apply a Quantum FFT model to Chicago housing data. Finally, we conclude with directions for future research.
翻译:Quantum Bayesian Computation(QBC)是一个新兴领域,它利用量子计算机的计算收益来提供Bayesian计算中的指数加速率。我们的论文以两种方式增加了文献内容。首先,我们展示了冯纽曼量度测量如何用来模拟机器学习算法,如Markov链和Monte Carlo(MC MC ) 和深层学习(DL),这些算法是Bayesian学习的基础。第二,我们描述了实施量子机器学习所需的数据编码方法,包括传统特征提取和内核嵌嵌入方法的对应方。然后我们的目标是展示如何将量子算法直接应用于统计机器学习问题。在理论方面,我们提供了高维回归、高斯进程(Q-GP)和高位梯度梯度下(Q-SGD)的量子模型。在经验方面,我们将Quantum FFTFT模型应用于芝加哥的住宅数据。最后,我们提出未来研究的方向。</s>