Class activation map (CAM) has been widely studied for visual explanation of the internal working mechanism of convolutional neural networks. The key of existing CAM-based methods is to compute effective weights to combine activation maps in the target convolution layer. Existing gradient and score based weighting schemes have shown superiority in ensuring either the discriminability or faithfulness of the CAM, but they normally cannot excel in both properties. In this paper, we propose a novel CAM weighting scheme, named FD-CAM, to improve both the faithfulness and discriminability of the CAM-based CNN visual explanation. First, we improve the faithfulness and discriminability of the score-based weights by performing a grouped channel switching operation. Specifically, for each channel, we compute its similarity group and switch the group of channels on or off simultaneously to compute changes in the class prediction score as the weights. Then, we combine the improved score-based weights with the conventional gradient-based weights so that the discriminability of the final CAM can be further improved. We perform extensive comparisons with the state-of-the-art CAM algorithms. The quantitative and qualitative results show our FD-CAM can produce more faithful and more discriminative visual explanations of the CNNs. We also conduct experiments to verify the effectiveness of the proposed grouped channel switching and weight combination scheme on improving the results. Our code is available at https://github.com/crishhh1998/FD-CAM.


翻译:为了直观地解释神经神经网络的内部工作机制,已广泛研究了等级激活图(CAM),以直观地解释神经网络的内部工作机制。现有CAM方法的关键在于计算有效加权,将目标神经层的激活图结合起来。现有的梯度和分数加权办法在确保CAM的可区分性或忠诚性方面显示出优势,但它们通常不能在这两种属性中都优于前者。在本文件中,我们提出一个新的CAM加权办法,名为FD-CAM,以提高基于CAM的CNN视觉解释的忠实性和可区别性。首先,我们通过进行分组化频道转换操作,提高得分加权的忠实性和可偏差性。具体地说,我们为每个频道配置相似性组,同时或同时转换频道组,以计算班级预测的得分数。然后,我们将改进的分数加权加权办法与常规梯度加权数相结合,以便进一步提高最后CAM的可比较性。我们通过进行广泛的比较,将基于分值的评分数和直观的加权办法,我们也可以在州-SDRA/CSalalalalalal-alalalalal assalbalal assalbalalalal assalup lacuducults。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月5日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员