In this paper, we introduce a novel way to represent the interface for two-phase flows with phase change. We combine a level-set method with a Cartesian embedded boundary method and take advantage of both. This is part of an effort to obtain a numerical strategy relying on Cartesian grids allowing the simulation of complex boundaries with possible change of topology while retaining a high-order representation of the gradients on the interface and the capability of properly applying boundary conditions on the interface. This leads to a two-fluid conservative second-order numerical method. The ability of the method to correctly solve Stefan problems, onset dendrite growth with and without anisotropy is demonstrated through a variety of test cases. Finally, we take advantage of the two-fluid representation to model a Rayleigh--B\'enard instability with a melting boundary.
翻译:在本文中,我们引入了一种新颖的方式来代表两阶段流动与阶段变化的界面。 我们将一个定级法与笛卡尔嵌入边界法相结合,并同时利用这两种方法。 这是努力获得一个数字战略的一部分, 依靠笛卡尔电网模拟复杂的边界,同时可能改变地形,同时在界面上保留一个高顺序的梯度表示, 以及适当适用界面边界条件的能力。 这导致一种双流保守的第二阶数字法。 正确解决斯特凡问题的方法、 与和不与厌食者相伴和无厌食者生长的能力, 通过各种测试案例得到证明。 最后, 我们利用两流代表制来模拟雷利- B\'enard的不稳定和熔化边界。