Substantial scholarship has estimated the susceptibility of jobs to automation, but little has examined how job contents evolve in the information age as new technologies substitute for tasks, shifting required skills rather than eliminating entire jobs. Here we explore patterns and consequences of changes in occupational skill and characterize occupations and workers subject to the greatest re-skilling pressure. Recent work found that changing skill requirements are greatest for STEM occupations. Nevertheless, analyzing 167 million online job posts covering 727 occupations over the last decade, we find that re-skilling pressure is greatest for low-skilled occupations when accounting for distance between skills. We further investigate the differences in skill change across employer and market size, as well as social demographic groups, and find that these differences tend to widen the economic divide. Jobs from large employers and markets experienced less change relative to small employers and markets, and non-white workers in low-skilled jobs are most demographically vulnerable. We conclude by showcasing our model's potential to precisely chart job evolution towards machine-interface integration using skill embedding spaces.
翻译:暂无翻译