Purpose: In this paper we consider the estimation of intracluster correlation for ordinal data. We focus on pure-tone audiometry hearing threshold data, where thresholds are measured in 5 decibel increments. We estimate the intracluster correlation for tests from iPhone-based hearing assessment application as a measure of test/retest reliability. Methods: We present a method to estimate the intracluster correlation using mixed effects cumulative logistic and probit models, which assume the outcome data are ordinal. This contrasts with using a mixed effects linear model which assumes that the outcome data are continuous. Results: In simulation studies we show that using a mixed effects linear model to estimate the intracluster correlation for ordinal data results in a negative finite sample bias, while using mixed effects cumulative logistic or probit models reduces this bias. The estimated intracluster correlation for the iPhone-based hearing assessment application is higher when using the mixed effects cumulative logistic and probit models compared to using a mixed effects linear model. Conclusion: When data are ordinal, using mixed effects cumulative logistic or probit models reduces the bias of intracluster correlation estimates relative to using a mixed effects linear model.
翻译:在本文中,我们考虑对圆形数据组内相关关系的估计。我们侧重于纯色声学测听阈值数据,其阈值以5分贝增量计量。我们估算了基于iPhone的听力评估应用测试的集群内相关关系,以此作为测试/测试可靠性的一种衡量尺度。方法:我们提出了一个方法,使用混合效应累积物流和probit模型来估计集群内相关关系,这些模型假定结果数据具有交集效应线性模型,而使用混合效应线性模型来假设结果数据是连续的。结果:在模拟研究中,我们显示使用混合效应线性模型来估计团内相关关系,得出负限抽样偏差,同时使用混合效应累积物流或probit模型来减少这种偏差。在使用混合效应累积物流和probit模型来估计基于iPhone的听力评估应用的集群内相关关系估计值比使用混合效应线性模型时要高。结论:当数据具有交集效应时,使用混合效应累积物流或probit模型时,则会减少内部相关估计与使用混合效应线性模型的偏差。