This study addresses the problem of learning an extended summary causal graph on time series. The algorithms we propose fit within the well-known constraint-based framework for causal discovery and make use of information-theoretic measures to determine (in)dependencies between time series. We first introduce generalizations of the causation entropy measure to any lagged or instantaneous relations, prior to using this measure to construct extended summary causal graphs by adapting two well-known algorithms, namely PC and FCI. The behavior of our methods is illustrated through several experiments run on simulated and real datasets.
翻译:本研究涉及在时间序列上学习一个扩展的简要因果图的问题。我们提议的算法符合众所周知的基于限制的因果发现框架,并利用信息理论措施确定(在)时间序列之间的依赖性。我们首先对任何滞后或即时关系采用因果关系的概括性措施,然后使用这一措施调整两种众所周知的算法,即PC和FCI,以构建扩展的简要因果图。我们的方法行为通过模拟和真实数据集进行的若干实验加以说明。