We propose a modification of the GPGCD algorithm, which has been presented in our previous research, for calculating approximate greatest common divisor (GCD) of more than 2 univariate polynomials with real coefficients and a given degree. In transferring the approximate GCD problem to a constrained minimization problem, different from the original GPGCD algorithm for multiple polynomials which uses the Sylvester subresultant matrix, the proposed algorithm uses the B\'ezout matrix. Experiments show that the proposed algorithm is more efficient than the original GPGCD algorithm for multiple polynomials with maintaining almost the same accuracy for most of the cases.
翻译:我们建议修改GPGCD算法,这是我们在先前的研究中介绍的,用于计算2个以上具有实际系数和一定程度的单体多面体(GCD)的近似最大普通算法。在将大约的GCD问题转移到一个限制最小化的问题时,与使用Sylvester子结果矩阵的多个多面体的原GPGCD算法不同,拟议的算法使用了B\'ezout矩阵。实验表明,提议的算法比多个多面体的原GPGCD算法效率更高,大多数情况下的精确度几乎相同。