CC-GLPDC codes are a class of generalized low-density parity-check (GLDPC) codes where the constraint nodes (CNs) represent convolutional codes. This allows for efficient decoding in the trellis with the forward-backward algorithm, and the strength of the component codes easily can be controlled by the encoder memory without changing the graph structure. In this letter, we extend the class of CC-GLDPC codes by introducing different types of irregularity at the CNs and investigating their effect on the BP and MAP decoding thresholds for the binary erasure channel (BEC). For the considered class of codes, an exhaustive grid search is performed to find the BP-optimized and MAP-optimized ensembles and compare their thresholds with the regular ensemble of the same design rate. The results show that irregularity can significantly improve the BP thresholds, whereas the thresholds of the MAP-optimized ensembles are only slightly different from the regular ensembles. Simulation results for the AWGN channel are presented as well and compared to the corresponding thresholds.
翻译:CC- GLPDC 代码是一种通用的低密度对等检查( GLDPC) 代码类别, 约束节点代表进化代码 。 这使得能够有效地用前向后算法解码 trellis 解码, 且组件代码的强度可以在不改变图形结构的情况下很容易由编码存储器内存控制 。 在这封信中, 我们通过在氯化萘中引入不同种类的不规则性来扩展CC- GLDPC 代码类别, 并调查其对二进制删除频道 BP 和 MAP 解码阈值的影响 。 对于所考虑的代码类别, 进行了详尽的网格搜索, 以查找 BP 优化和 MAP 优化的昆虫组合, 并将其阈值与同一设计率的常规共同值进行比较。 结果表明, 异常性可以大大改进 BP 阈值, 而 MAP- 优化的ensembrequemels 的阈值仅与常规酶组合值略有不同 。 在所考虑的分类中, 模拟的模拟结果与相应的阈值与相应的阈值比较。