We introduce a meta-learning algorithm for adversarially robust classification. The proposed method tries to be as model agnostic as possible and optimizes a dataset prior to its deployment in a machine learning system, aiming to effectively erase its non-robust features. Once the dataset has been created, in principle no specialized algorithm (besides standard gradient descent) is needed to train a robust model. We formulate the data optimization procedure as a bi-level optimization problem on kernel regression, with a class of kernels that describe infinitely wide neural nets (Neural Tangent Kernels). We present extensive experiments on standard computer vision benchmarks using a variety of different models, demonstrating the effectiveness of our method, while also pointing out its current shortcomings. In parallel, we revisit prior work that also focused on the problem of data optimization for robust classification \citep{Ily+19}, and show that being robust to adversarial attacks after standard (gradient descent) training on a suitable dataset is more challenging than previously thought.


翻译:我们引入了对抗性强强分类的元学习算法。 提议的方法试图尽可能作为模型不可知性,并在机器学习系统部署之前优化数据集,目的是有效地消除其非野蛮特征。 一旦数据集建立起来,原则上不需要专门算法( 标准梯度下移) 来训练一个强健模型。 我们将数据优化程序作为内核回归的双级优化问题来制定, 由一组内核来描述无限宽的神经网( Neural Tangent Kernels ) 。 我们展示了使用各种模型的标准计算机视觉基准的广泛实验, 展示了我们方法的有效性, 同时指出其目前的缺点。 与此同时, 我们重新审视了先前也侧重于数据优化问题的工作, 以便进行稳健的分类 \ citep{Ily+19}, 并表明, 在对合适的数据集进行标准( 梯级) 后对对抗性攻击的力度比先前想象的要强得多。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月20日
Arxiv
126+阅读 · 2020年9月6日
Arxiv
15+阅读 · 2018年4月3日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员