We propose a new class of metrics, called the survival independence divergence (SID), to test dependence between a right-censored outcome and covariates. A key technique for deriving the SIDs is to use a counting process strategy, which equivalently transforms the intractable independence test due to the presence of censoring into a test problem for complete observations. The SIDs are equal to zero if and only if the right-censored response and covariates are independent, and they are capable of detecting various types of nonlinear dependence. We propose empirical estimates of the SIDs and establish their asymptotic properties. We further develop a wild bootstrap method to estimate the critical values and show the consistency of the bootstrap tests. The numerical studies demonstrate that our SID-based tests are highly competitive with existing methods in a wide range of settings.
翻译:暂无翻译