We consider tensor product random fields $Y_d$, $d\in\mathbb{N}$, whose covariance funtions are Gaussian kernels. The average case approximation complexity $n^{Y_d}(\varepsilon)$ is defined as the minimal number of evaluations of arbitrary linear functionals needed to approximate $Y_d$, with relative $2$-average error not exceeding a given threshold $\varepsilon\in(0,1)$. We investigate the growth of $n^{Y_d}(\varepsilon)$ for arbitrary fixed $\varepsilon\in(0,1)$ and $d\to\infty$. Namely, we find criteria of boundedness for $n^{Y_d}(\varepsilon)$ on $d$ and of tending $n^{Y_d}(\varepsilon)\to\infty$, $d\to\infty$, for any fixed $\varepsilon\in(0,1)$. In the latter case we obtain necessary and sufficient conditions for the following logarithmic asymptotics \begin{eqnarray*} \ln n^{Y_d}(\varepsilon)= a_d+q(\varepsilon)b_d+o(b_d),\quad d\to\infty, \end{eqnarray*} with any $\varepsilon\in(0,1)$. Here $q\colon (0,1)\to\mathbb{R}$ is a non-decreasing function, $(a_d)_{d\in\mathbb{N}}$ is a sequence and $(b_d)_{d\in\mathbb{N}}$ is a positive sequence such that $b_d\to\infty$, $d\to\infty$. We show that only special quantiles of self-decomposable distribution functions appear as functions $q$ in a given asymptotics.


翻译:我们考虑的是高产随机字段$Y_d$, $d_ mathb{N} 美元。 我们调查的是任意固定 $\ varepsilon\ in (0, 1) 和 $d\\\ d} 美元的平均案件近似复杂性 $n\ Y_d}( varepsilon) 美元, 其相对的2美元平均错误不超过给定阈值 $\ varepsilon\ in (0, 1) 美元( varepsilon) 美元, 任意固定固定固定固定 $\ varepsilon\ in (0, 1, 美元) 和 $d\\ t\ 美元。 也就是说, 我们找到以美元计算的任意线性函数的最小值 $n_Y\\\ d, 美元(\ d) 美元( varepliq_ d} 美元, 相对来说, 任何固定的 $\\\\\\\\\\\ recial_ rimax a (0, 美元) a crow) y a casy a 必要的条件是必要和足够的。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员