This study develops a non-asymptotic Gaussian approximation theory for distributions of M-estimators, which are defined as maximizers of empirical criterion functions. In existing mathematical statistics literature, numerous studies have focused on approximating the distributions of the M-estimators for statistical inference. In contrast to the existing approaches, which mainly focus on limiting behaviors, this study employs a non-asymptotic approach, establishes abstract Gaussian approximation results for maximizers of empirical criteria, and proposes a Gaussian multiplier bootstrap approximation method. Our developments can be considered as an extension of the seminal works (Chernozhukov, Chetverikov and Kato (2013, 2014, 2015)) on the approximation theory for distributions of suprema of empirical processes toward their maximizers. Through this work, we shed new lights on the statistical theory of M-estimators. Our theory covers not only regular estimators, such as the least absolute deviations, but also some non-regular cases where it is difficult to derive or to approximate numerically the limiting distributions such as non-Donsker classes and cube root estimators.
翻译:本研究为分布测算器开发了非非无线测量高斯近似理论,该理论被界定为实验标准功能的最大化。在现有的数学统计文献中,许多研究侧重于统计推算测算器分布的近似性分布。与主要侧重于限制行为的现有方法相比,本研究采用了非无线测量法,为经验标准最大化者确立了抽象的测算近似结果,并提出了高斯测增倍靴近似法。我们的发展可被视为原始作品(Chernozhukov、Chetverkov和Kato,2013、2014、2015)的延伸,其重点是统计推算器对实验过程最高值分布的近似性理论。通过这项工作,我们为测算器的统计理论提供了新的亮点。 我们的理论不仅涵盖常规估测算器,例如最不绝对偏差,而且还包括一些非常规案例,在这些案例中,我们很难得出或近似数字化的限定性分布,例如非君基级和根基级。