The density ratio model (DRM) provides a flexible and useful platform for combining information from multiple sources. In this paper, we consider statistical inference under two-sample DRMs with additional parameters defined through and/or additional auxiliary information expressed as estimating equations. We examine the asymptotic properties of the maximum empirical likelihood estimators (MELEs) of the unknown parameters in the DRMs and/or defined through estimating equations, and establish the chi-square limiting distributions for the empirical likelihood ratio (ELR) statistics. We show that the asymptotic variance of the MELEs of the unknown parameters does not decrease if one estimating equation is dropped. Similar properties are obtained for inferences on the cumulative distribution function and quantiles of each of the populations involved. We also propose an ELR test for the validity and usefulness of the auxiliary information. Simulation studies show that correctly specified estimating equations for the auxiliary information result in more efficient estimators and shorter confidence intervals. Two real-data examples are used for illustrations.
翻译:密度比率模型(DRM)为综合来自多个来源的信息提供了一个灵活而有用的平台。 在本文中,我们认为,在两个样本DRM下,统计推论在两个样本DRM下,加上以估计方程表示的附加参数;我们研究了DRM中未知参数和/或通过估计方程界定的未知参数的最大经验概率估计器(MELES)和/或通过估计方程界定的未知参数的无症状性属性;为经验概率比(ELR)统计数据设定了基方程限制分布。我们表明,如果一个估算方程被删除,未知参数的MELE的无症状差异不会减少。对于每个相关人群的累积分布函数和四分位数的推论,也获得了类似的属性。我们还建议对辅助信息的有效性和有用性进行ELR测试。模拟研究表明,正确规定的辅助信息估计方程有助于更高效的估量器和缩短信任度间隔。我们用两个真实数据示例用于说明。