We revisit empirical Bayes in the absence of a tractable likelihood function, as is typical in scientific domains relying on computer simulations. We investigate how the empirical Bayesian can make use of neural density estimators first to use all noise-corrupted observations to estimate a prior or source distribution over uncorrupted samples, and then to perform single-observation posterior inference using the fitted source distribution. We propose an approach based on the direct maximization of the log-marginal likelihood of the observations, examining both biased and de-biased estimators, and comparing to variational approaches. We find that, up to symmetries, a neural empirical Bayes approach recovers ground truth source distributions. With the learned source distribution in hand, we show the applicability to likelihood-free inference and examine the quality of the resulting posterior estimates. Finally, we demonstrate the applicability of Neural Empirical Bayes on an inverse problem from collider physics.
翻译:在没有可移动的可能性功能的情况下,我们重新研究经验贝叶山脉,正如依赖计算机模拟的科学领域所特有的那样。我们调查经验贝叶西亚人如何利用神经密度估计器,首先利用所有噪音干扰的观测,对未损坏样品的先前或源分布情况作出估计,然后利用合适的源分布情况进行单一观测后推推论。我们建议采用一种办法,即直接最大限度地扩大观测的日边概率,同时检查偏差和偏差估计器,并比较不同的方法。我们发现,在对称之前,神经性实验贝雅方法恢复了地面真实源分布情况。我们掌握的已知源分布情况,我们展示了对无可能性推断的适用性,并审查了由此得出的远端估计的质量。最后,我们展示了Neural Emprical Bayes对焦量物理的反问题的适用性。