Internet-based economies and societies are drowning in deceptive attacks. These attacks take many forms, such as fake news, phishing, and job scams, which we call "domains of deception." Machine-learning and natural-language-processing researchers have been attempting to ameliorate this precarious situation by designing domain-specific detectors. Only a few recent works have considered domain-independent deception. We collect these disparate threads of research and investigate domain-independent deception along four dimensions. First, we provide a new computational definition of deception and formalize it using probability theory. Second, we break down deception into a new taxonomy. Third, we analyze the debate on linguistic cues for deception and supply guidelines for systematic reviews. Fourth, we provide some evidence and some suggestions for domain-independent deception detection.
翻译:以互联网为基础的经济和社会正被欺骗性攻击所淹没。这些攻击有多种形式,例如假新闻、钓鱼和工作骗局,我们称之为“欺骗领域 ” 。 机器学习和自然语言处理研究者一直试图通过设计特定域的探测器来缓解这种危险局面。 只有最近的一些著作考虑了独立域的欺骗。 我们收集了这些不同的研究线索,并调查了四个层面的独立的域欺骗行为。 首先,我们提供了一个新的欺骗行为计算定义,并利用概率理论将其正式化。 其次,我们把欺骗行为打破为一种新的分类学。 第三,我们分析了关于欺骗行为语言提示的辩论,并为系统审查提供了指导方针。 第四,我们提供了一些证据和一些建议,用于识别独立域的欺骗行为。