项目名称: 壳聚糖电沉积法构筑基于三维大孔石墨烯电极的电化学传感新体系

项目编号: No.21305127

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 刘吉洋

作者单位: 浙江理工大学

项目金额: 25万元

中文摘要: 利用三维大孔石墨烯(3D-G)电极有效构建生物传感新体系具有重要理论意义和实际应用价值。本项目拟利用壳聚糖(CS)电沉积法构建基于3D-G电极的电化学传感新体系。利用化学气相沉积法生长的3D-G材料,制备3D-G基底碳电极;将其高比表面积、优越的电子传导性能与CS的生物相容性、易衍生化特性相结合;以CS电沉积法为普适方法,可控制备多功能性CS复合膜修饰三维大孔电极,实现三类传感分析新体系(第三代酶传感器、适配子传感器、免疫传感器)的有效制备和高灵敏电化学检测。具体为:3D-G电极上一步电沉积含酶复合膜,实现酶的直接电化学和电催化;利用二茂铁接枝CS,电沉积含电化学探针的复合膜,通过组装法固载相关适配子,实现对凝血酶的高灵敏检测及人宫颈癌细胞的选择性检测;对CS的氨基衍生化后共价固定抗体,实现对肿瘤标志物癌胚抗原的免疫检测。项目可为三维石墨烯大孔电极在生物电化学领域的应用提供新思路。

中文关键词: 三维石墨烯;壳聚糖电沉积;聚多巴胺;生物传感器;电化学检测

英文摘要: Electrode material and architecture play critical roles in bioanalysis for simple, sensitive and stable detection. Three dimensional (3D) macroscopic electrodes are highly desirable since they can improve the performance of electrochemical biosensors. Therefore,development of novel electrochemical biosensing platform based on 3D macroscopic electrodes is of great significance. Monolithic and macroscopic graphene foam grown by chemical vapor deposition (CVD) could serve as the electrode scaffold. Compared with the conventional 2D (planar) electrochemical electrodes, such 3D macroscopic graphene electrodes are attractive for the construction of biosensors due to the unique advantages of macroscopic scaffold, large active surface area, unhindered substance diffusion, high conductivity and stability. More importantly, 3D graphene electrodes provide potential for cheap and large-scale preparation with high reproducibility. However, the surface of 3D macroscopic graphene is highly hydrophobic and has no functional group. The modification of 3D macroscopic graphene using biofunctinal substrates is the key to expand its application in bioanalysis. As a biocompatible polymer, chitosan (CS) remains a focus of study in recent years due to its hydrophilicity, excellent film-forming ability and remarkable biocompatibility. E

英文关键词: three-dimensional graphene;chitosan electrodeposition;poly dopamine;biosensor;electrochemical detection

成为VIP会员查看完整内容
0

相关内容

【CVPR2022】EDTER:基于Transformer的边缘检测(CVPR2022)
专知会员服务
31+阅读 · 2022年3月18日
【NeurIPS2021】多模态虚拟点三维检测
专知会员服务
18+阅读 · 2021年11月16日
专知会员服务
40+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
《碳中和愿景下储能产业发展白皮书》27页ppt
专知会员服务
65+阅读 · 2021年3月30日
ICLR 2022|化学反应感知的分子表示学习
专知
0+阅读 · 2022年2月10日
【NeurIPS2021】多模态虚拟点三维检测
专知
0+阅读 · 2021年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
14+阅读 · 2020年2月6日
小贴士
相关VIP内容
【CVPR2022】EDTER:基于Transformer的边缘检测(CVPR2022)
专知会员服务
31+阅读 · 2022年3月18日
【NeurIPS2021】多模态虚拟点三维检测
专知会员服务
18+阅读 · 2021年11月16日
专知会员服务
40+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
《碳中和愿景下储能产业发展白皮书》27页ppt
专知会员服务
65+阅读 · 2021年3月30日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员