Neuro-Symbolic (NeSy) integration combines symbolic reasoning with Neural Networks (NNs) for tasks requiring perception and reasoning. Most NeSy systems rely on continuous relaxation of logical knowledge and no discrete decisions are made within the model pipeline. Furthermore, these methods assume that the symbolic rules are given. In this paper, we propose Deep Symbolic Learning (DSL), a NeSy system that learns NeSy-functions, i.e., the composition of a (set of) perception functions which map continuous data to discrete symbols, and a symbolic function over the set of symbols. DSL learns simultaneously the perception and symbolic functions, while being trained only on their composition (NeSy-function). The key novelty of DSL is that it can create internal (interpretable) symbolic representations and map them to perception inputs within a differentiable NN learning pipeline. The created symbols are automatically selected to generate symbolic functions that best explain the data. We provide experimental analysis to substantiate the efficacy of DSL in simultaneously learning perception and symbolic functions.
翻译:Neuro-Symbolic (Nesy) 整合将象征性推理与神经网络(NNS)结合,以完成需要感知和推理的任务。大多数 Nesy 系统依赖持续放松逻辑知识,而没有在模型编程中做出独立决定。此外,这些方法假定提供了象征性规则。在本文中,我们提出深象学习(DSL)系统,即一个学习 Nesy 功能的Nesy 系统,即将连续数据映射成离散符号的一组感知功能的构成,以及一套符号的象征功能。DSL同时学习感知和符号功能,同时学习,同时只接受有关其组成(Nesy-功能)的培训。DSL的关键新颖之处是,它可以创建内部(可互换的)象征性表示,并将它们映射成不同NNe学习管道内感知投入的图。创建的符号被自动选定,以产生最能解释数据的象征性功能。我们提供实验性分析,以证实DSL在同时学习感知和符号功能方面的功效。