We prove a characterization of $t$-query quantum algorithms in terms of the unit ball of a space of degree-$2t$ polynomials. Based on this, we obtain a refined notion of approximate polynomial degree that equals the quantum query complexity, answering a question of Aaronson et al. (CCC'16). Our proof is based on a fundamental result of Christensen and Sinclair (J. Funct. Anal., 1987) that generalizes the well-known Stinespring representation for quantum channels to multilinear forms. Using our characterization, we show that many polynomials of degree four are far from those coming from two-query quantum algorithms. We also give a simple and short proof of one of the results of Aaronson et al. showing an equivalence between one-query quantum algorithms and bounded quadratic polynomials. Revision note: A mistake was found in the proof of the second result on degree-4 polynomials far from 2-query quantum algorithms. An explanation of the issue, a corrected proof and stronger examples are presented in work of Escudero Guti\'errez and the second author.
翻译:我们证明了美元质量算算的特征,即以一度-2美元多元度空间的单位球为单位球。在此基础上,我们获得了一个精确的近似多元度概念,该概念相当于量子查询的复杂性,回答Aaronson等人的问题(CCC'16)。我们的证据基于Christensen和Sinclair(J.Funct.Anal.,1987年)的基本结果,该结果将著名的量子频道的量子脉冲代表制成多线形。我们用我们的特点来表明,许多四级多元度的多元度与二度量子算法相距甚远。我们还简单和简短地证明了Aaronson等人的结果之一,表明一种量子算法和捆绑的四度多元度量子学(J. Funct. Anaal.,1987年)之间的等同性。订正说明:在关于离2度-4多线形量算法远的第二个结果的证据中发现了一个错误。关于这个问题的第二个结果的解释、一个经过更正的证据和更有力的例子,见于Scarud和Craudré的著作。