We consider the power of local algorithms for approximately solving Max $k$XOR, a generalization of two constraint satisfaction problems previously studied with classical and quantum algorithms (MaxCut and Max E3LIN2). In Max $k$XOR each constraint is the XOR of exactly $k$ variables and a parity bit. On instances with either random signs (parities) or no overlapping clauses and $D+1$ clauses per variable, we calculate the expected satisfying fraction of the depth-1 QAOA from Farhi et al [arXiv:1411.4028] and compare with a generalization of the local threshold algorithm from Hirvonen et al [arXiv:1402.2543]. Notably, the quantum algorithm outperforms the threshold algorithm for $k > 4$. On the other hand, we highlight potential difficulties for the QAOA to achieve computational quantum advantage on this problem. We first compute a tight upper bound on the maximum satisfying fraction of nearly all large random regular Max $k$XOR instances by numerically calculating the ground state energy density $P(k)$ of a mean-field $k$-spin glass [arXiv:1606.02365]. The upper bound grows with $k$ much faster than the performance of both one-local algorithms. We also identify a new obstruction result for low-depth quantum circuits (including the QAOA) when $k=3$, generalizing a result of Bravyi et al [arXiv:1910.08980] when $k=2$. We conjecture that a similar obstruction exists for all $k$.
翻译:我们认为本地算法对于大约解决 Max $k$XOR 的功率是本地算法的功率,这是将先前与古典算法和量子算法(MaxCut和Max E3LIN2)研究的两个约束性满意度问题加以概括化。在Max $KXOR 中,每个限制的功率是完全的 美元变量的XOR XOR 。在随机标志(差数)或没有重叠条款和每个变量的$D+1条款的案例中,我们计算了法利等人[arXiv:141.440288] 的深度-1 QAAAAAAAA的极限算法的功率比值差4美元。另一方面,我们强调QAOA在在这个问题上实现计算量量优势方面的潜在困难。我们首先对几乎全部随机正常的 Max $k$k$XOR 实例做了一个最紧紧的内限值,方法是用数字计算 地面能量密度 $(K$Q$) (arX2xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx