We consider a high-dimensional dynamic pricing problem under non-stationarity, where a firm sells products to $T$ sequentially arriving consumers that behave according to an unknown demand model with potential changes at unknown times. The demand model is assumed to be a high-dimensional generalized linear model (GLM), allowing for a feature vector in $\mathbb R^d$ that encodes products and consumer information. To achieve optimal revenue (i.e., least regret), the firm needs to learn and exploit the unknown GLMs while monitoring for potential change-points. To tackle such a problem, we first design a novel penalized likelihood-based online change-point detection algorithm for high-dimensional GLMs, which is the first algorithm in the change-point literature that achieves optimal minimax localization error rate for high-dimensional GLMs. A change-point detection assisted dynamic pricing (CPDP) policy is further proposed and achieves a near-optimal regret of order $O(s\sqrt{\Upsilon_T T}\log(Td))$, where $s$ is the sparsity level and $\Upsilon_T$ is the number of change-points. This regret is accompanied with a minimax lower bound, demonstrating the optimality of CPDP (up to logarithmic factors). In particular, the optimality with respect to $\Upsilon_T$ is seen for the first time in the dynamic pricing literature, and is achieved via a novel accelerated exploration mechanism. Extensive simulation experiments and a real data application on online lending illustrate the efficiency of the proposed policy and the importance and practical value of handling non-stationarity in dynamic pricing.


翻译:在非常态下,我们考虑高维动态定价问题,在非常态下,一个公司将产品卖给按未知需求模式行事且可能在未知时间发生潜在变化的连续抵达的消费者,然后将产品卖给美元,然后按其顺序将产品卖给美元。我们假设需求模型是一个高维通用线性模型(GLM),允许以美元进行本地化误差率,将产品和消费者信息编码成元。为了实现最佳收入(即,至少令人遗憾),公司需要学习和利用未知的GLM,同时监测潜在的变化点。要解决这一问题,我们首先为高动态GLMS设计一种新型基于未知需求模式的基于可能性的在线变更点检测算法,这是高度GLMS文献中第一个实现最佳小型本地化误差率的算法。为了实现最佳收益(sqrrrtrt_Upuslalality)政策,变革点检测并实现最优化的美元(ialityal-ralityality) 和最优化的硬度记录。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月4日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员