A broad class of stochastic volatility models are defined by systems of stochastic differential equations. While these models have seen widespread success in domains such as finance and statistical climatology, they typically lack an ability to condition on historical data to produce a true posterior distribution. To address this fundamental limitation, we show how to re-cast a class of stochastic volatility models as a hierarchical Gaussian process (GP) model with specialized covariance functions. This GP model retains the inductive biases of the stochastic volatility model while providing the posterior predictive distribution given by GP inference. Within this framework, we take inspiration from well studied domains to introduce a new class of models, Volt and Magpie, that significantly outperform baselines in stock and wind speed forecasting, and naturally extend to the multitask setting.
翻译:一系列广泛的随机波动模型由随机差异方程式系统定义。 虽然这些模型在金融和统计气候学等领域取得了广泛成功,但它们通常缺乏以历史数据为条件制作真实的后部分布的能力。 为了解决这一根本性的限制,我们展示了如何将一组随机波动模型重新定位为具有专门共变功能的等级高斯过程模型。这种GP模型保留了随机波动模型的感应偏差,同时提供了GP推理提供的后部预测分布。 在这个框架内,我们从研究周密的领域汲取灵感,引入一个新的模型类别,即沃尔特和麦基,这些模型大大超出库存和风速预报的基线,自然延伸到多任务环境。