Inferring dependencies between complex biological traits while accounting for evolutionary relationships between specimens is of great scientific interest yet remains infeasible when trait and specimen counts grow large. The state-of-the-art approach uses a phylogenetic multivariate probit model to accommodate binary and continuous traits via a latent variable framework, and utilizes an efficient bouncy particle sampler (BPS) to tackle the computational bottleneck -- integrating many latent variables from a high-dimensional truncated normal distribution. This approach breaks down as the number of specimens grows and fails to reliably characterize conditional dependencies between traits. Here, we propose an inference pipeline for phylogenetic probit models that greatly outperforms BPS. The novelty lies in 1) a combination of the recent Zigzag Hamiltonian Monte Carlo (Zigzag-HMC) with linear-time gradient evaluations and 2) a joint sampling scheme for highly correlated latent variables and correlation matrix elements. In an application exploring HIV-1 evolution from 535 viruses, the inference requires joint sampling from an 11,235-dimensional truncated normal and a 24-dimensional covariance matrix. Our method yields a 5-fold speedup compared to BPS and makes it possible to learn partial correlations between candidate viral mutations and virulence. Computational speedup now enables us to tackle even larger problems: we study the evolution of influenza H1N1 glycosylations on around 900 viruses. For broader applicability, we extend the phylogenetic probit model to incorporate categorical traits, and demonstrate its use to study Aquilegia flower and pollinator co-evolution.
翻译:复杂的生物特性之间产生依赖性,而对于试样之间的进化性关系则进行核算,这在科学上引起了极大的兴趣,然而,当试样和试样数量大幅增长时,这种方法仍然不可行。最先进的方法使用一种植物遗传多变性百分位模型,通过潜伏的变数框架来容纳二进制和连续特征,并使用一种高效的体温粒子采样器(BPS)来应对计算性裂变 -- -- 将高维度脱轨正常分布中的许多潜在变量结合起来。这个方法随着试样数量的增长而崩溃,无法可靠地确定内分泌特性之间的有条件依赖性。在这里,我们建议为强血源性多变种型模型建立一个推导管,大大超过BPS。新颖在于:1) 将最近的Zigzag Hamiltonimetian Monte Carlo(Zigzag-HMC)与线性梯度评估结合起来,2) 将高度相联的潜伏变量和关联性基质矩阵元素联合采样计划。在探索H-1病毒变异性变异性病毒的应用中,因此需要从11,甚至从11,351维的变异性变异性变现到我们比的变异性变本法 开始进行联合采样性变换。