Magnetic resonance imaging (MRI) is a central modality for stroke imaging. It is used upon patient admission to make treatment decisions such as selecting patients for intravenous thrombolysis or endovascular therapy. MRI is later used in the duration of hospital stay to predict outcome by visualizing infarct core size and location. Furthermore, it may be used to characterize stroke etiology, e.g. differentiation between (cardio)-embolic and non-embolic stroke. Computer based automated medical image processing is increasingly finding its way into clinical routine. Previous iterations of the Ischemic Stroke Lesion Segmentation (ISLES) challenge have aided in the generation of identifying benchmark methods for acute and sub-acute ischemic stroke lesion segmentation. Here we introduce an expert-annotated, multicenter MRI dataset for segmentation of acute to subacute stroke lesions. This dataset comprises 400 multi-vendor MRI cases with high variability in stroke lesion size, quantity and location. It is split into a training dataset of n=250 and a test dataset of n=150. All training data will be made publicly available. The test dataset will be used for model validation only and will not be released to the public. This dataset serves as the foundation of the ISLES 2022 challenge with the goal of finding algorithmic methods to enable the development and benchmarking of robust and accurate segmentation algorithms for ischemic stroke.
翻译:磁共振成像(MRI)是中风成像的一种中心模式,在患者入院后用于作出治疗决定,例如选择静脉输血透析或内心血管治疗的病人。在医院住院期间,MRI后来被用于通过直观地貌核心大小和地点预测结果。此外,它可用于描述中风病变学,例如(心血管)和无血管中风之间的区别。基于计算机的自动化医疗图像处理正在越来越多地进入临床常规。以前,Ischemic Stroke Lesion Crevisionation (ISLES) 挑战的循环有助于为急性和次急性中心血管损伤分解制定基准方法。在这里,我们引入了专家附加说明的多点MRI数据集,用于对急性分解至下心中心损伤进行分解。该数据集由400个多点MRI案件组成,在中转体大小、数量和位置上差异很大。它被分为一个培训数据集,N=250和测试模型 n=150。所有用于S-Crentral Rass tral train se 数据将公开测试,用于Silvial sal sqal deal detraction find for the dreal be be be be be be laviewd dal be daldald dald dal be be be be lavedddddaldaldaldalddddddddalddaldaldaldddddddd dald daldaldaldaldaldaldaldaldaldaldaldaldaldaldddddddaldald 数据, ladddddddddalddddddddddddddddddddd ladddddddddddddddddddddddddddddddaldaldaldaldaldalddddddaldaldaldaldaldaldddddddalddddddddddddaldaldaldaldaldaldaldaldaldalddd