Open material databases storing hundreds of thousands of material structures and their corresponding properties have become the cornerstone of modern computational materials science. Yet, the raw outputs of the simulations, such as the trajectories from molecular dynamics simulations and charge densities from density functional theory calculations, are generally not shared due to their huge size. In this work, we describe a cloud-based platform to facilitate the sharing of raw data and enable the fast post-processing in the cloud to extract new properties defined by the user. As an initial demonstration, our database currently includes 6286 molecular dynamics trajectories for amorphous polymer electrolytes and 5.7 terabytes of data. We create a public analysis library at https://github.com/TRI-AMDD/htp_md to extract multiple properties from the raw data, using both expert designed functions and machine learning models. The analysis is run automatically with computation in the cloud, and results then populate a database that can be accessed publicly. Our platform encourages users to contribute both new trajectory data and analysis functions via public interfaces. Newly analyzed properties will be incorporated into the database. Finally, we create a front-end user interface at https://www.htpmd.matr.io for browsing and visualization of our data. We envision the platform to be a new way of sharing raw data and new insights for the computational materials science community.
翻译:储存数十万材料结构及其相应特性的开放材料数据库储存数十万材料结构及其相应特性的开放材料数据库已成为现代计算材料科学的基石。然而,模拟的原始产出,例如分子动态模拟和密度功能理论计算中的充电密度的轨迹,由于规模巨大,一般没有共享。在这项工作中,我们描述一个云基平台,以便利共享原始数据,使云层的快速后处理能够提取用户定义的新属性。作为初步示范,我们的数据库目前包括了无定型聚合电解体和数据5.7兆字节的分子动态轨迹。我们在 https://github.com/TRI-AMD/htp_md建立一个公共分析库,利用专家设计的功能和机器学习模型从原始数据中提取多种属性。在云层中进行自动计算,然后将一个可以公开访问的数据库传播出来。我们的平台鼓励用户通过公共界面贡献新的轨迹数据和分析功能。新分析属性将被纳入到 https-freialalal developmental 界面。最后,我们将在 https frealdevisional developmentalmentalmental sideal be be be wedegraducald. we be we creald a wedeald a we be be beddddddddaldalddddaldaldaldalddald dalddddddaldaldddddddaldddd daldaldalbaldaldald dalddddaldaldaldaldaldaldaldalddaldaldaldalddalddddddaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldald