In the paper, we propose an adaptive data-driven model-based approach for filling the gaps in time series. The approach is based on the automated evolutionary identification of the optimal structure for a composite data-driven model. It allows adapting the model for the effective gap-filling in a specific dataset without the involvement of the data scientist. As a case study, both synthetic and real datasets from different fields (environmental, economic, etc) are used. The experiments confirm that the proposed approach allows achieving the higher quality of the gap restoration and improve the effectiveness of forecasting models.
翻译:在本文中,我们建议采用适应性数据驱动模型方法来填补时间序列中的空白,该方法以自动渐进式地确定综合数据驱动模型的最佳结构为基础,允许在没有数据科学家参与的情况下对模型进行调整,以便在特定数据集中有效填补空白。作为案例研究,使用了不同领域(环境、经济等)的合成和真实数据集。实验证实,拟议方法可以提高差距恢复的质量,提高预测模型的效力。