The problem of nowcasting extreme weather events can be addressed by applying either numerical methods for the solution of dynamic model equations or data-driven artificial intelligence algorithms. Within this latter framework, the present paper illustrates how a deep learning method, exploiting videos of radar reflectivity frames as input, can be used to realize a warning machine able to sound timely alarms of possible severe thunderstorm events. From a technical viewpoint, the computational core of this approach is the use of a value-weighted skill score for both transforming the probabilistic outcomes of the deep neural network into binary classification and assessing the forecasting performances. The warning machine has been validated against weather radar data recorded in the Liguria region, in Italy,
翻译:通过采用数字方法解决动态模型方程式或数据驱动人工智能算法,可以解决当前预测极端天气事件的问题。在后一框架内,本文件说明如何利用利用雷达反射框架视频作为输入的深层次学习方法,实现能够及时发出可能发生的严重雷暴事件警报的预警机器。从技术角度看,这一方法的计算核心是使用价值加权技能评分,既将深神经网络的概率结果转换为二分分类,又评估预测性能。根据意大利利古里亚地区记录的天气雷达数据,对预警机器进行了验证。