Node-link diagrams are widely used to visualize graphs. Most graph layout algorithms only consider graph topology or node attributes for aesthetic goals (e.g., with fewer edge crossings and node occlusions), resulting in information loss and waste. Existing hybrid approaches that bind the two perspectives mostly build layouts on top of the attribute-based communities to better satisfy exploration goals. However, they usually suffer from high human dependency, input restriction, and loosely-coupled bindings of topology and attributes, thus may have limited substantial improvements to the layout quality. In this paper, we propose an embedding-based graph exploration pipeline to enjoy the best of both graph topology and node attributes. First, we leverage embedding algorithms for attributed graphs to encode the two perspectives into latent space. Then, we present an embedding-driven graph layout algorithm, GEGraph, which can achieve aesthetic layouts with better community preservation to support an easy interpretation of the graph structure. Next, graph explorations are extended based on the generated graph layout and insights extracted from the embedding vectors. Illustrated with examples, we build a layout-preserving aggregation method with Focus+Context interaction and a related nodes searching approach with multiple proximity strategies. Finally, we conduct quantitative and qualitative evaluations, a user study, and two case studies to validate our approach.
翻译:节点链接图表被广泛用于图形的可视化。 大多数图表布局算法仅考虑用于美学目标的图形表层或节点属性(例如,边缘交叉点和节点隔离点较少),从而导致信息丢失和浪费。 现有的混合方法将两种观点捆绑在一起,主要在属性社区之上建构布局,以更好地满足勘探目标。然而,它们通常具有高度的人类依赖性、输入限制和地形和属性的松散组合,因此可能限制了布局质量的重大改进。 在本文中,我们建议采用基于嵌入的图形勘探管道,以享受最佳的图形表层和节点属性。 首先,我们利用嵌入式算法将两种观点编码到潜伏空间。 然后,我们提出嵌入式驱动的图形布局算法,GEGEGraph, 它可以在更便于社区保存的情况下实现美观布局布局布局,从而支持对图形结构的简单解释。 下一步,图形勘探方法是根据生成的图表布局布局布局和从嵌矢量矢量矢量中提取的洞察来扩展的管道。 Illustusgistration 和我们用多个搜索方法, 与多级对比研究,最后与用户搜索方法,我们用两个对比,我们用搜索方法,我们建立了比试制了比审。