Data Augmentation (DA) technique has been widely implemented in the computer vision field to relieve the data shortage, while the DA in Medical Image Analysis (MIA) is still mostly experience-driven. Here, we develop a plug-and-use DA method, named MedAugment, to introduce the automatic DA argumentation to the MIA field. To settle the difference between natural images and medical images, we divide the augmentation space into pixel augmentation space and spatial augmentation space. A novel operation sampling strategy is also proposed when sampling DA operations from the spaces. To demonstrate the performance and universality of MedAugment, we implement extensive experiments on four classification datasets and three segmentation datasets. The results show that our MedAugment outperforms most state-of-the-art DA methods. This work shows that the plug-and-use MedAugment may benefit the MIA community. Code is available at https://github.com/NUS-Tim/MedAugment_Pytorch.
翻译:暂无翻译