3D Gaussian splatting (3DGS) has recently demonstrated impressive capabilities in real-time novel view synthesis and 3D reconstruction. However, 3DGS heavily depends on the accurate initialization derived from Structure-from-Motion (SfM) methods. When trained with randomly initialized point clouds, 3DGS fails to maintain its ability to produce high-quality images, undergoing large performance drops of 4-5 dB in PSNR. Through extensive analysis of SfM initialization in the frequency domain and analysis of a 1D regression task with multiple 1D Gaussians, we propose a novel optimization strategy dubbed RAIN-GS (Relaxing Accurate Initialization Constraint for 3D Gaussian Splatting), that successfully trains 3D Gaussians from random point clouds. We show the effectiveness of our strategy through quantitative and qualitative comparisons on multiple datasets, largely improving the performance in all settings. Our project page and code can be found at https://ku-cvlab.github.io/RAIN-GS.
翻译:暂无翻译