Monocular depth estimation is an essential task in the computer vision community. While tremendous successful methods have obtained excellent results, most of them are computationally expensive and not applicable for real-time on-device inference. In this paper, we aim to address more practical applications of monocular depth estimation, where the solution should consider not only the precision but also the inference time on mobile devices. To this end, we first develop an end-to-end learning-based model with a tiny weight size (1.4MB) and a short inference time (27FPS on Raspberry Pi 4). Then, we propose a simple yet effective data augmentation strategy, called R2 crop, to boost the model performance. Moreover, we observe that the simple lightweight model trained with only one single loss term will suffer from performance bottleneck. To alleviate this issue, we adopt multiple loss terms to provide sufficient constraints during the training stage. Furthermore, with a simple dynamic re-weight strategy, we can avoid the time-consuming hyper-parameter choice of loss terms. Finally, we adopt the structure-aware distillation to further improve the model performance. Notably, our solution named LiteDepth ranks 2nd in the MAI&AIM2022 Monocular Depth Estimation Challenge}, with a si-RMSE of 0.311, an RMSE of 3.79, and the inference time is 37$ms$ tested on the Raspberry Pi 4. Notably, we provide the fastest solution to the challenge. Codes and models will be released at \url{https://github.com/zhyever/LiteDepth}.


翻译:单心深度估算是计算机视觉界的一项基本任务。 虽然巨大的成功方法已经取得了极好的结果, 但大多数都是计算成本昂贵且不适用于实时的在设计性推算。 在本文中, 我们的目标是解决单心深度估算的更实际应用, 解决方案不仅应考虑移动设备上的精确度, 而且还应考虑移动设备上的推断时间。 为此, 我们首先开发一个基于端到端学习的模型, 其重量小( 1.4MB) 且时间短( 在 Raspberry Pi 4 上的27FPS ) 。 然后, 我们提出一个简单而有效的数据增强战略, 叫做 R2 作物, 来提升模型性能。 此外, 我们观察到, 仅用一个单一损失期的简单轻体重模型训练的模型将因性能瓶颈而受损。 为了缓解这一问题, 我们采用了多个损失术语, 来在培训阶段提供足够的限制。 此外, 有了简单的动态再量战略, 我们可以避免耗时超值的超比值选择损失条件。 最后, 我们采用结构蒸馏法, 来进一步改进模型性能, 进一步改进模型的性模型性能性能性能。 。 。 。 。 IM3 IM3 IM 的解决方案 IM 级 IM 3 IM 级 级 级 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员