The traditional Minkowski distances are induced by the corresponding Minkowski norms in real-valued vector spaces. In this work, we propose novel statistical symmetric distances based on the Minkowski's inequality for probability densities belonging to Lebesgue spaces. These statistical Minkowski distances admit closed-form formula for Gaussian mixture models when parameterized by integer exponents: Namely, we prove that these distances between mixtures are obtained from multinomial expansions, and written by means of weighted sums of inverse exponentials of generalized Jensen diversity indices of the mixture component distributions. This result extends to arbitrary mixtures of exponential families with natural parameter spaces being cones: This includes the binomial, the multinomial, the zero-centered Laplacian, the Gaussian and the Wishart mixtures, among others. We also derive a Minkowski's diversity index of a normalized weighted set of probability distributions from Minkowski's inequality.
翻译:传统的 Minkowski 距离是由实际价值矢量空间中相应的Minkowski 标准诱发的。 在这项工作中, 我们提出基于 Minkowski 对属于Lebesgue 空间的概率密度的不平等性的新统计对称距离。 这些统计的 Minkowski 距离允许高斯混合模型的封闭式公式, 当以整数引言参数进行参数比较时 : 也就是说, 我们证明混合物之间的这些距离是从多数值膨胀中获得的, 并用混合物成分分布的通用Jensen多样性指数反向指数的加权组合来写成。 这结果扩大到了具有自然参数空间锥形的指数式家庭任意混合: 其中包括双感、 多数值、 零偏向拉普拉西亚、 高斯 和 Wishart 混合物等。 我们还从 Minkowski 的不平等中得出了 Minkowski 概率分布的标准化加权组合的多样化指数 。