Pose estimation is a basic module in many robot manipulation pipelines. Estimating the pose of objects in the environment can be useful for grasping, motion planning, or manipulation. However, current state-of-the-art methods for pose estimation either rely on large annotated training sets or simulated data. Further, the long training times for these methods prohibit quick interaction with novel objects. To address these issues, we introduce a novel method for zero-shot object pose estimation in clutter. Our approach uses a hypothesis generation and scoring framework, with a focus on learning a scoring function that generalizes to objects not used for training. We achieve zero-shot generalization by rating hypotheses as a function of unordered point differences. We evaluate our method on challenging datasets with both textured and untextured objects in cluttered scenes and demonstrate that our method significantly outperforms previous methods on this task. We also demonstrate how our system can be used by quickly scanning and building a model of a novel object, which can immediately be used by our method for pose estimation. Our work allows users to estimate the pose of novel objects without requiring any retraining. Additional information can be found on our website https://bokorn.github.io/zephyr/
翻译:估计是许多机器人操纵管道中一个基本模块。估计物体在环境中的构成状况可以用于掌握、运动规划或操纵。然而,目前最先进的估计方法要么依靠大型附加说明的培训成套材料,要么依靠模拟数据。此外,这些方法的漫长培训时间禁止与新对象进行快速互动。为了解决这些问题,我们为零射对象引入了一种新颖方法,在云雾中进行估计。我们的方法使用一种假设生成和评分框架,重点是学习一种评分功能,该评分功能一般适用于不用于培训的物体。我们通过将假设评分为无顺序点差异的函数,实现零光化。我们用无序点差异的假设函数实现零光化。我们评估我们用纯度和无纹的物体对数据集进行挑战的方法,在被浸泡的场景色中,并表明我们的方法大大超越了以前对这项工作采用的方法。我们还演示了如何使用我们的系统,快速扫描和建立一个新物体模型,我们的方法可以立即用于估算。我们的工作允许用户在不需要任何再培训的情况下,对新物体进行估算。