Recent breakthroughs in adversarial generative modeling have led to models capable of producing video samples of high quality, even on large and complex datasets of real-world video. In this work, we focus on the task of video prediction, where given a sequence of frames extracted from a video, the goal is to generate a plausible future sequence. We first improve the state of the art by performing a systematic empirical study of discriminator decompositions and proposing an architecture that yields faster convergence and higher performance than previous approaches. We then analyze recurrent units in the generator, and propose a novel recurrent unit which transforms its past hidden state according to predicted motion-like features, and refines it to handle dis-occlusions, scene changes and other complex behavior. We show that this recurrent unit consistently outperforms previous designs. Our final model leads to a leap in the state-of-the-art performance, obtaining a test set Frechet Video Distance of 25.7, down from 69.2, on the large-scale Kinetics-600 dataset.
翻译:最近对抗性基因变异模型的突破导致产生了能够制作高质量视频样本的模型,即使是关于真实世界视频的大型和复杂数据集的样本。在这项工作中,我们侧重于视频预测的任务,根据从视频中提取的一组框架,目标是产生一个合理的未来序列。我们首先通过对歧视者分解进行系统的实验性研究,提出一个比以往方法更快趋同和更高性能的架构来改善最新水平。我们随后分析了发电机中的经常性单位,并提出了一个新的经常性单位,根据预测的运动类特征来改变其过去隐藏状态,并改进它处理分离、场景变化和其他复杂行为。我们表明,这个经常性单位一贯地超越了以前的设计。我们的最后模型导致最新性能的飞跃,获得了Frechet视频距离25.7的测试,从大型Kinetics-600数据集的69.2下降到25.7。