The Neural Architecture Search (NAS) problem is typically formulated as a graph search problem where the goal is to learn the optimal operations over edges in order to maximise a graph-level global objective. Due to the large architecture parameter space, efficiency is a key bottleneck preventing NAS from its practical use. In this paper, we address the issue by framing NAS as a multi-agent problem where agents control a subset of the network and coordinate to reach optimal architectures. We provide two distinct lightweight implementations, with reduced memory requirements (1/8th of state-of-the-art), and performances above those of much more computationally expensive methods. Theoretically, we demonstrate vanishing regrets of the form O(sqrt(T)), with T being the total number of rounds. Finally, aware that random search is an, often ignored, effective baseline we perform additional experiments on 3 alternative datasets and 2 network configurations, and achieve favourable results in comparison.
翻译:神经结构搜索(NAS)问题通常被描述为一个图形搜索问题,目标是在边缘上学习最佳操作,以便最大限度地实现图形水平的全球目标。 由于巨大的建筑参数空间,效率是阻止NAS实际使用的关键瓶颈。 在本文中,我们通过将NAS确定为一个多试剂问题来解决这一问题,即代理控制网络的一个子集并进行协调以达到最佳结构。我们提供了两种不同的轻量化实施方法,其内存要求降低(1/8的先进水平),其性能比计算成本更高的方法要高得多。理论上,我们对O(sqrt(T))形式感到非常遗憾,而T是其总数。最后,我们意识到随机搜索是一个非常经常被忽视的有效基准,我们在3个替代数据集和2个网络配置上进行了额外的实验,并在比较中取得了有利的结果。