Labeling is the cornerstone of supervised machine learning, which has been exploited in a plethora of various applications, with sign language recognition being one of them. However, such algorithms must be fed with a huge amount of consistently labeled data during the training process to elaborate a well-generalizing model. In addition, there is a great need for an automated solution that works with any nationally diversified sign language. Although there are language-agnostic transcription systems, such as the Hamburg Sign Language Notation System (HamNoSys) that describe the signer's initial position and body movement instead of the glosses' meanings, there are still issues with providing accurate and reliable labels for every real-world use case. In this context, the industry relies heavily on manual attribution and labeling of the available video data. In this work, we tackle this issue and thoroughly analyze the HamNoSys labels provided by various maintainers of open sign language corpora in five sign languages, in order to examine the challenges encountered in labeling video data. We also investigate the consistency and objectivity of HamNoSys-based labels for the purpose of training machine learning models. Our findings provide valuable insights into the limitations of the current labeling methods and pave the way for future research on developing more accurate and efficient solutions for sign language recognition.


翻译:标签是受监督的机器学习的基石,这种学习在众多的各种应用中被利用,手语识别是其中之一。然而,在培训过程中,这种算法必须用大量持续贴标签的数据来补充,以详细制定广泛推广的模式。此外,非常需要一种自动化的解决方案,与任何全国性多样化手语一起发挥作用。尽管存在着语言识别记录系统,例如汉堡手语符号语标注系统(HamnoSys),它描述了签名人最初的位置和身体运动,而不是光滑的含义,但是在为每个真实世界使用的案件提供准确可靠的标签方面仍然存在问题。在这方面,该行业在很大程度上依赖手动的归属和现有视频数据标签。在这项工作中,我们处理这一问题,并透彻分析由各种公开手语公司以五种手语提供的哈姆诺西语标注系统,以研究在标注视频数据时遇到的挑战。我们还调查了HamNoSys标签的连贯性和客观性,为当前语言标签的准确性解释方法提供了我们如何发展有价值的工具学习模型的标志。</s>

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
多模态认知计算
专知会员服务
174+阅读 · 2022年9月16日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月27日
Arxiv
15+阅读 · 2022年1月24日
Arxiv
15+阅读 · 2021年12月22日
A Survey on Data Augmentation for Text Classification
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员