To thrive in evolving environments, humans are capable of continual acquisition and transfer of new knowledge, from a continuous video stream, with minimal supervisions, while retaining previously learnt experiences. In contrast to human learning, most standard continual learning benchmarks focus on learning from static iid images in fully supervised settings. Here, we examine a more realistic and challenging problem$\unicode{x2014}$Label-Efficient Online Continual Object Detection (LEOCOD) in video streams. By addressing this problem, it would greatly benefit many real-world applications with reduced annotation costs and retraining time. To tackle this problem, we seek inspirations from complementary learning systems (CLS) in human brains and propose a computational model, dubbed as Efficient-CLS. Functionally correlated with the hippocampus and the neocortex in CLS, Efficient-CLS posits a memory encoding mechanism involving bidirectional interaction between fast and slow learners via synaptic weight transfers and pattern replays. We test Efficient-CLS and competitive baselines in two challenging real-world video stream datasets. Like humans, Efficient-CLS learns to detect new object classes incrementally from a continuous temporal stream of non-repeating video with minimal forgetting. Remarkably, with only 25% annotated video frames, our Efficient-CLS still leads among all comparative models, which are trained with 100% annotations on all video frames. The data and source code will be publicly available at https://github.com/showlab/Efficient-CLS.


翻译:在不断演变的环境中,人类能够不断从连续的视频流中获取和传授新知识,同时保持最低限度的监督,同时保留以前学到的经验。与人类学习相比,大多数标准的持续学习基准侧重于在完全监督的环境中从静态的iid图像中学习。在这里,我们检查了一个更现实和更具挑战性的问题$unicode{x2014}$Label-Efficisty在线连续天体探测(LEOCOD)在视频流中。通过解决这一问题,将大大有利于许多真实世界应用程序,降低批注成本和再培训时间。为了解决这个问题,我们从人类大脑中寻找补充学习系统(CLS)的灵感,并提出一个计算模型,以高效的 CLS为代名。从功能上来说,与CLS的hipocampus和Necoltortex相关联,高效的CLS建立一个记忆编码机制,涉及快速和缓慢的学习者之间的双向互动,通过合成重量传输和模式重写。我们在两个具有挑战性的实时视频流数据流数据集中测试高效的CLS和竞争性基线。像标中,与持续地在不断的25级学习中,只有不断的Sci-CLS-CLSylevlex-ral-cremarkelexlal-ral-cle

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Online Continual Learning for Embedded Devices
Arxiv
0+阅读 · 2022年7月15日
Arxiv
16+阅读 · 2021年3月2日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员