Personalized Federated Learning (pFL) has emerged as a promising solution to tackle data heterogeneity across clients in FL. However, existing pFL methods either (1) introduce high communication and computation costs or (2) overfit to local data, which can be limited in scope, and are vulnerable to evolved test samples with natural shifts. In this paper, we propose PerAda, a parameter-efficient pFL framework that reduces communication and computational costs and exhibits superior generalization performance, especially under test-time distribution shifts. PerAda reduces the costs by leveraging the power of pretrained models and only updates and communicates a small number of additional parameters from adapters. PerAda has good generalization since it regularizes each client's personalized adapter with a global adapter, while the global adapter uses knowledge distillation to aggregate generalized information from all clients. Theoretically, we provide generalization bounds to explain why PerAda improves generalization, and we prove its convergence to stationary points under non-convex settings. Empirically, PerAda demonstrates competitive personalized performance (+4.85% on CheXpert) and enables better out-of-distribution generalization (+5.23% on CIFAR-10-C) on different datasets across natural and medical domains compared with baselines, while only updating 12.6% of parameters per model based on the adapter.
翻译:个人化联邦学习(PFL)是解决FL客户之间数据差异的一个很有希望的解决办法。然而,现有的pFL方法要么采用高通信和计算成本,要么过度适应当地数据,这在范围上可能有限,而且容易受自然变化的进化测试样本的伤害。在本文中,我们提议PerAda,一个降低通信和计算成本的参数效率PFL框架,并展示超常通用性能,特别是在测试时间分布转换期间。 PerAda通过利用预先培训的模型的力量降低成本,仅更新和传递来自适应器的少量额外参数。 PerAda具有很好的概括性,因为它将每个客户的个人化适应器与全球适应器规范化,而全球适应器则使用知识蒸馏来汇总来自所有客户的通用信息。理论上,我们提供了概括性框架,以解释为什么PerAda改进了一般化和计算成本,特别是在测试时间分配期间。从非Convex环境下的固定点看,PerAda展示了竞争性的个人化性表现(在CheXpert-FAR标准更新中为+4.85%,在12-10格式的基础上,在不同的标准更新中,比LARC数据库中,在不同的基准更新中,比L5-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx