Automatic lyric transcription (ALT) is a nascent field of study attracting increasing interest from both the speech and music information retrieval communities, given its significant application potential. However, ALT with audio data alone is a notoriously difficult task due to instrumental accompaniment and musical constraints resulting in degradation of both the phonetic cues and the intelligibility of sung lyrics. To tackle this challenge, we propose the MultiModal Automatic Lyric Transcription system (MM-ALT), together with a new dataset, N20EM, which consists of audio recordings, videos of lip movements, and inertial measurement unit (IMU) data of an earbud worn by the performing singer. We first adapt the wav2vec 2.0 framework from automatic speech recognition (ASR) to the ALT task. We then propose a video-based ALT method and an IMU-based voice activity detection (VAD) method. In addition, we put forward the Residual Cross Attention (RCA) mechanism to fuse data from the three modalities (i.e., audio, video, and IMU). Experiments show the effectiveness of our proposed MM-ALT system, especially in terms of noise robustness. Project page is at https://n20em.github.io.


翻译:自动读音系统(ALT)是一个新生的研究领域,它吸引了语言和音乐信息检索社区越来越多的兴趣,因为它具有巨大的应用潜力。然而,单凭音频数据的ALT是一个众所周知的困难任务,因为有工具的配合和音乐限制导致语音提示的退化和歌词的可感性。为了应对这一挑战,我们提议采用多式自动读音记录系统(MM-ALT),以及一个新的数据集N20EM,它包括音乐录音、嘴唇运动视频和表演歌手戴的耳膜测量单位(IMU)数据。我们首先将Wav2vec 2.0框架从自动语音识别(ASR)改为自动语音识别(ALT)任务。我们然后提出以视频为基础的ALT方法和以IMU为基础的语音活动探测(VAD)方法。此外,我们提出了从三种模式(即音频、视频和惯性测量单位)中整合数据(N20EMMU)的机制。实验显示我们拟议的AM-LT系统的有效性,特别是在MALTM系统中。

0
下载
关闭预览

相关内容

自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
42+阅读 · 2022年6月30日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习思维导图
机器学习研究会
15+阅读 · 2017年8月20日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习思维导图
机器学习研究会
15+阅读 · 2017年8月20日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员