The Principle of Maximum Entropy is a rigorous technique for estimating an unknown distribution given partial information while simultaneously minimizing bias. However, an important requirement for applying the principle is that the available information be provided error-free (Jaynes 1982). We relax this requirement using a memoryless communication channel as a framework to derive a new, more general principle. We show our new principle provides an upper bound on the entropy of the unknown distribution and the amount of information lost due to the use of a given communications channel is unknown unless the unknown distribution's entropy is also known. Using our new principle we provide a new interpretation of the classic principle and experimentally show its performance relative to the classic principle and other generally applicable solutions. Finally, we present a simple algorithm for solving our new principle and an approximation useful when samples are limited.


翻译:暂无翻译

0
下载
关闭预览

相关内容

迄今为止,产品设计师最友好的交互动画软件。

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2023年10月21日
Arxiv
21+阅读 · 2023年7月12日
Arxiv
11+阅读 · 2023年3月8日
Arxiv
13+阅读 · 2021年5月25日
An Attentive Survey of Attention Models
Arxiv
44+阅读 · 2020年12月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
15+阅读 · 2023年10月21日
Arxiv
21+阅读 · 2023年7月12日
Arxiv
11+阅读 · 2023年3月8日
Arxiv
13+阅读 · 2021年5月25日
An Attentive Survey of Attention Models
Arxiv
44+阅读 · 2020年12月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员