The Principle of Maximum Entropy is a rigorous technique for estimating an unknown distribution given partial information while simultaneously minimizing bias. However, an important requirement for applying the principle is that the available information be provided error-free (Jaynes 1982). We relax this requirement using a memoryless communication channel as a framework to derive a new, more general principle. We show our new principle provides an upper bound on the entropy of the unknown distribution and the amount of information lost due to the use of a given communications channel is unknown unless the unknown distribution's entropy is also known. Using our new principle we provide a new interpretation of the classic principle and experimentally show its performance relative to the classic principle and other generally applicable solutions. Finally, we present a simple algorithm for solving our new principle and an approximation useful when samples are limited.
翻译:暂无翻译