We study the computational complexity of the eigenvalue problem for the Klein-Gordon equation in the framework of the Solvability Complexity Index Hierarchy. We prove that the eigenvalue of the Klein-Gordon equation with linearly decaying potential can be computed in a single limit with guaranteed error bounds from above. The proof is constructive, i.e. we obtain a numerical algorithm that can be implemented on a computer. Moreover, we prove abstract enclosures for the point spectrum of the Klein-Gordon equation and we compare our numerical results to these enclosures. Finally, we apply both the implemented algorithm and our abstract enclosures to several physically relevant potentials such as Sauter and cusp potentials and we provide a convergence and error analysis.
翻译:我们研究了克莱因-哥顿等式在可溶性复杂度指数等级结构框架内的计算复杂性问题。 我们证明,克莱因-哥登等式具有线性衰减潜力的二次值可以在单一限度内用上面保证的误差界限来计算。 证明是建设性的, 也就是说, 我们获得一个数字算法, 可以在计算机上实施。 此外, 我们证明克莱因- 哥登等式的点谱是抽象的, 我们比较了我们的数字结果和这些附文。 最后, 我们既应用了已执行的算法, 也应用了我们抽象的附加法, 来计算一些与实际有关的潜力, 比如 Sauter 和 cusp 潜力。 我们提供了趋同和错误分析。