Algorithms with predictions is a recent framework that has been used to overcome pessimistic worst-case bounds in incomplete information settings. In the context of scheduling, very recent work has leveraged machine-learned predictions to design algorithms that achieve improved approximation ratios in settings where the processing times of the jobs are initially unknown. In this paper, we study the speed-robust scheduling problem where the speeds of the machines, instead of the processing times of the jobs, are unknown and augment this problem with predictions. Our main result is an algorithm that achieves a $\min\{\eta^2(1+\alpha), (2 + 2/\alpha)\}$ approximation, for any $\alpha \in (0,1)$, where $\eta \geq 1$ is the prediction error. When the predictions are accurate, this approximation outperforms the best known approximation for speed-robust scheduling without predictions of $2-1/m$, where $m$ is the number of machines, while simultaneously maintaining a worst-case approximation of $2 + 2/\alpha$ even when the predictions are arbitrarily wrong. In addition, we obtain improved approximations for three special cases: equal job sizes, infinitesimal job sizes, and binary machine speeds. We also complement our algorithmic results with lower bounds. Finally, we empirically evaluate our algorithm against existing algorithms for speed-robust scheduling.
翻译:包含预测的算法是最近一个框架,用来克服不完整信息设置中的悲观最坏情况框。在时间安排方面,最近的工作利用了机器学习预测来设计算法,在最初不知道工作处理时间的环境下,实现更好的近似比率。在本文中,我们研究了速度-气压调度问题,即机器的速度与工作处理时间不同,是未知的,并增加了预测的这一问题。我们的主要结果是一种算法,在计算任何美元(0.1美元)的情况下,实现2+2/alpha) $(近似值), 任何美元(0.1美元) 的计算法, 以达到更好的近似比值。 在预测准确的情况下, 近似于速度- 速度调度最已知的近似, 而没有预测的为2-1美元/ mm美元, 美元是机器的数量, 同时保持最差的比值为2+2/alpha$(美元) 的算法, 即使预测是任意错误的, 也比值。最后, 我们得到了3个特别的算法的算法的比值。 最后, 我们的算算算算得更精确。