Iterative steady-state solvers are widely used in computational fluid dynamics. Unfortunately, it is difficult to obtain steady-state solution for unstable problem caused by physical instability and numerical instability. Optimization is a better choice for solving unstable problem because steady-state solution is always the extreme point of optimization regardless of whether the problem is unstable or ill-conditioned, but it is difficult to solve partial differential equations (PDEs) due to too many optimization variables. In this study, we propose an Online Dimension Reduction Optimization (ODRO) method to enhance the convergence of the traditional iterative method to obtain the steady-state solution of unstable problem. This method performs proper orthogonal decomposition (POD) on the snapshots collected from a few iteration steps, optimizes PDE residual in the POD subspace to get a solution with lower residual, and then continues to iterate with the optimized solution as the initial value, repeating the above three steps until the residual converges. Several typical cases show that the proposed method can efficiently calculate the steady-state solution of unstable problem with both the high efficiency and robustness of the iterative method and the good convergence of the optimization method. In addition, this method is easy to implement in almost any iterative solver with minimal code modification.


翻译:在计算流体动态中广泛使用稳定状态稳定解答器。 不幸的是, 很难找到稳定状态的方法来解决由物理不稳定和数字不稳定造成的不稳定问题。 优化是解决不稳定问题的更好选择, 因为稳定状态解决方案总是最优化的极点, 不论问题不稳定还是条件不当, 但是由于优化变量太多, 很难解决部分差异方程式( PDEs ) 。 在此研究中, 我们提议了一种在线降低维度优化化( ODRO) 方法, 以加强传统迭代方法的趋同, 以获得不稳定问题的稳定状态解决方案。 这种方法在从几个迭代步骤中采集的近似镜片上进行适当的 orthogoal 解析( POD), 优化 PDE 在 POD 子空间的剩余部分以较低残余值获得解决方案, 然后继续使用优化的解决方案作为初始值, 重复以上三个步骤, 直至剩余部分趋同。 几个典型的案例表明, 拟议的方法可以有效地计算出不稳定问题的稳定状态解决方案, 以高效和稳健的稳健性方法 。 在迭代法中, 最易采用的方法是最佳的方法。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员